Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Clin Chim Acta ; 547: 117415, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: covidwho-20230697

RESUMO

BACKGROUND: Great concerns have been raised on SARS-CoV-2 impact on men's andrological well-being, and many studies have attempted to determine whether SARS-CoV-2 is present in the semen and till now the data are unclear and somehow ambiguous. However, these studies used quantitative real-time (qRT) PCR, which is not sufficiently sensitive to detect nucleic acids in clinical samples with a low viral load. METHODS: The clinical performance of various nucleic acid detection methods (qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH) was assessed for SARS-CoV-2 using 236 clinical samples from laboratory-confirmed COVID-19 cases. Then, the presence of SARS-CoV-2 in the semen of 12 recovering patients was investigated using qRT-PCR, OSN-qRT-PCR, cd-PCR, and CBPH in parallel using 24 paired semen, blood, throat swab, and urine samples. RESULTS: The sensitivity and specificity along with AUC of CBPH was markedly higher than the other 3methods. Although qRT-PCR, OSN-qRT-PCR and cdPCR detected no SARS-CoV-2 RNA in throat swab, blood, urine, and semen samples of the 12 patients, CBPH detected the presence of SARS-CoV-2 genome fragments in semen samples, but not in paired urine samples, of 3 of 12 patients. The existing SARS-CoV-2 genome fragments were metabolized over time. CONCLUSIONS: Both OSN-qRT-PCR and cdPCR had better performance than qRT-PCR, and CBPH had the highest diagnostic performance in detecting SARS-CoV-2, which contributed the most improvement to the determination of the critical value in gray area samples with low vrial load, which then provides a rational screening strategy for studying the clearance of coronavirus in the semen over time in patients recovering from COVID-19. Although the presence of SARS-CoV-2 fragments in the semen was demonstrated by CBPH, COVID-19 is unlikely to be sexually transmitted from male partners for at least 3 months after hospital discharge.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , SARS-CoV-2/genética , COVID-19/diagnóstico , Sêmen/química , Teste para COVID-19 , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética
2.
Sci China Life Sci ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2297189

RESUMO

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.

3.
Cell Rep ; 42(2): 112075, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: covidwho-2246821

RESUMO

Booster immunizations and breakthrough infections can elicit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant neutralizing activity. However, the durability of the neutralization response is unknown. We characterize the sensitivity of BA.1, BA.2, BA.2.75, BA.4/BA.5, BF.7, BQ.1.1, and XBB against neutralizing antibodies from vaccination, hybrid immunity, and breakthrough infections 4-6 months after vaccination and infection. We show that a two-dose CoronaVac or a third-dose ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination. Hybrid immunity as well as Delta, BA.1, and BA.2 breakthrough infections induce long-term persistence of the antibody response, and over 70% of sera neutralize BA.1, BA.2, BA.4/BA.5, and BF.7. However, BQ.1.1 and XBB, followed by BA.2.75, are more resistant to neutralization, with neutralizing titer reductions of ∼9- to 41-fold, ∼16- to 63-fold, and ∼4- to 25-fold, respectively. These data highlight additional vaccination in CoronaVac- or ZF2001-vaccinated individuals and provide insight into the durability of neutralization against Omicron subvariants.

4.
Proteomics ; : e2200306, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2242447

RESUMO

The majority of people in China have been immunized with the inactivated viral vaccine BBIBP-CorV. The emergence of the Omicron variant raised the concerns about protection efficacy of the inactivated viral vaccine in China. However, longitudinal neutralization data describing protection efficacy against Omicron variant is still lacking. Here we present one-year longitudinal neutralization data of BBIBP-CorV on authentic Omicron, Delta, and wild-type strains using 224 sera collected from 14 volunteers who have finished three doses BBIBP-CorV. The sera were also subjected for monitoring the SARS-CoV-2 specific IgG, IgA, and IgM responses on protein and peptide microarrays. The neutralization titers showed different protection efficacies against the three strains. By incorporating IgG and IgA signals of proteins and Spike protein derived peptide on microarray, panels as potential surrogate biomarkers for rapid estimation of neutralization titers were established. These data support the necessity of the 3rd dose of BBIBP-CorV vaccination. After further validation and assay development, the panels could be used for reliable, convenient and fast evaluation of the efficacy of vaccination.

5.
Cell reports ; 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-2237643

RESUMO

Booster immunizations and breakthrough infections can elicit SARS-CoV-2 Omicron subvariants neutralizing activity. However, the durability of the neutralization response is unknown. We characterize the sensitivity of BA.1, BA.2, BA.2.75, BA.4/BA.5, BF.7, BQ.1.1, and XBB against neutralizing antibodies from vaccination, hybrid immunity, and breakthrough infections 4–6 months after vaccination and infection. We show that a two-dose CoronaVac or a third-dose ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination. Hybrid immunity as well as Delta, BA.1, and BA.2 breakthrough infections induce long-term persistence of the antibody response, and over 70% of sera neutralize BA.1, BA.2, BA.4/BA.5, and BF.7. However, BQ.1.1 and XBB, followed by BA.2.75, are more resistant to neutralization, with neutralizing titer reductions of ∼9- to 41-fold, ∼16- to 63-fold, and ∼4- to 25-fold, respectively. These data highlight additional vaccination in CoronaVac- or ZF2001-vaccinated individuals and provide insight into the durability of neutralization against Omicron subvariants. Graphical Zhu et al. report that a two-dose CoronaVac or ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination. Hybrid immunity and Delta, BA.1 and BA.2 breakthrough infection induce neutralization against earlier Omicron variants, but not for BQ.1.1 and XBB, up to 5 months after vaccination or infection.

6.
Heliyon ; 9(3): e13598, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-2237236

RESUMO

Background and aims: Idiopathic pulmonary fibrosis (IPF) is a fibrosing lung disease with unknown etiology, leading to cough and dyspnoea, which is also one of the most common sequelae affecting the quality of life of COVID-19 survivors. There is no cure for IPF patients. We aim to develop a reliable IPF animal model with quantification of fibrosis based on Micro-Computer Tomography (micro-CT) images for the new drug discovery, because different bleomycin administration routes, doses, and intervals are reported in the literature, and there is no quantitative assessment of pulmonary fibrosis based on micro-CT images in animal studies. Methods: We compared three dosages (1.25 mg/kg, 2.5 mg/kg, and 5 mg/kg) of intratracheal bleomycin administration and experiment intervals (14 and 21 days) in C57BL/6 mice by investigating survival rates, pulmonary histopathology, micro-CT, peripheral CD4+ & CD8+ cells, and cytokines. Moreover, a simple and reliable new method was developed for scoring fibrosis in live mice based on Micro-CT images by using Image J software, which transfers the dark sections in pulmonary Micro-CT images to light colors on a black background. Results: The levels of hydroxyproline, inflammation cytokine, fibrotic pathological changes, and collagen deposition in the lungs of mice were bleomycin dose-dependent and time-dependent as well as the body weight loss. Based on the above results, the mice model at 21 days after being given bleomycin at 1.25 mg/kg has optimal pulmonary fibrosis with a high survival rate and low toxicity. There is a significant decrease in the light area (gray value at 9.86 ± 0.72) in the BLM mice, indicating that a significant decrease in the alveolar air area was observed in BLM injured mice compared to normal groups (###p < 0.001), while the Pirfenidone administration increased the light area (gray value) to 21.71 ± 2.95 which is close to the value observed in the normal mice (gray value at 23.23 ± 1.66), which is consistent with the protein levels of Col1A1, and α-SMA. Notably, the standard deviations for the consecutive six images of each group indicate the precision of this developed quantitation method for the micro-CT image taken at the fifth rib of each mouse. Conclusion: Provided a quantifying method for Micro-CT images in an optimal and repeatable pulmonary fibrosis mice model for exploring novel therapeutic interventions.

8.
Signal Transduct Target Ther ; 8(1): 20, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2185773

RESUMO

An ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of a mosaic-type recombinant vaccine candidate, named NVSI-06-09, as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had administered two or three doses of inactivated vaccine BBIBP-CorV at least 6 months prior to enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. Between May 25 and 30, 2022, 516 adults received booster vaccination with 260 in NVSI-06-09 group and 256 in BBIBP-CorV group. Interim results showed a similar safety profile between two booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 post-booster, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those by BBIBP-CorV. Our findings indicated that a booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against divergent SARS-CoV-2 variants, including Omicron and its sub-lineages.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle
9.
Genome Med ; 14(1): 146, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: covidwho-2196419

RESUMO

BACKGROUND: The emergence of SARS-CoV-2 Omicron subvariants has raised questions regarding resistance to immunity by natural infection or immunization. We examined the sensitivity of Delta and Omicron subvariants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4/5, and BA.3) to neutralizing antibodies from BBIBP-CorV-vaccinated and BBIBP-CorV- or ZF2001-boosted individuals, as well as individuals with Delta and BA.1 breakthrough infections, and determined their fusogenicity and infectivity. METHODS: In this cross-sectional study, serum samples from two doses of BBIBP-CorV-vaccinated individuals 1 (n = 36), 3 (n = 36), and 7 (n = 37) months after the second dose; BBIBP-CorV- (n = 25) or ZF2001-boosted (n = 30) individuals; and fully vaccinated individuals with Delta (n = 30) or BA.1 (n = 26) infection were collected. The serum-neutralizing reactivity and potency of bebtelovimab were assessed against D614G, Delta, and Omicron subvariants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4/5, and BA.3) through a pseudovirus neutralization assay. The fusogenicity and infectivity of D614G, Delta, and Omicron subvariants were determined by cell-cell fusion assay and pseudovirus infection assay, respectively. RESULTS: Omicron subvariants markedly escaped vaccine-elicited neutralizing antibodies after two doses of BBIBP-CorV with comparable efficiency. A third dose vaccination of BBIBP-CorV or ZF2001 increased neutralizing antibody titers and breadth against Delta and three Omicron subvariants. Delta and BA.1 breakthrough infections induced comparable neutralizing antibody titers against D614G and Delta variants, whereas BA.1 breakthrough infections elicited a stronger and broader antibody response against three Omicron subvariants than Delta breakthrough infections. BA.2.12.1 and BA.4/5 are more resistant to immunity induced by breakthrough infections. Bebtelovimab had no significant loss of potency against the Delta and Omicron subvariants. Cell culture experiments showed Omicron subvariants to be less fusogenic and have higher infectivity than D614G and Delta with comparable efficiency. CONCLUSIONS: These findings have important public health implications and highlight the importance of repeated exposure to SARS-CoV-2 antigens to broaden the neutralizing antibody response against Omicron subvariants.


Assuntos
COVID-19 , Humanos , Estudos Transversais , SARS-CoV-2 , Anticorpos Neutralizantes , Infecções Irruptivas , Anticorpos Antivirais
10.
Frontiers in pharmacology ; 13, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2073353

RESUMO

Patients with colon adenocarcinoma (COAD) are at a higher probability of infection with COVID-19 than healthy individuals. However, there is no globally accepted treatment protocol for patients with COAD/COVID-19. Quercetin has been found to have significant antitumor, antiviral and anti-inflammatory effects in several studies. Therefore, this study sought to evaluate the potential of quercetin as the agent for COAD/COVID-19 and to explore its mechanisms. We used bioinformatics algorithms to obtain COAD/COVID-19-related genes (CCRG) from COAD-related transcriptome data and COVID-related transcriptome sequencing data, and used these genes to construct a COAD prognostic model. We intersected the CCRG with the therapeutic target genes of quercetin and obtained a total of 105 genes (potential target genes of quercetin for the treatment of COAD/COVID-19). By constructing a protein-protein interaction (PPI) network, we ascertained FOS, NFKB1, NFKB1A, JUNB, and JUN as possible core target genes of quercetin for the treatment of COAD/COVID-19. Bioinformatic analysis of these 105 genes revealed that the mechanisms for quercetin the treatment of COAD/COVID-19 may be associated with oxidative stress, apoptosis, anti-inflammatory, immune, anti-viral and multiple pathways containing IL-17, TNF, HIF-1. In this study, we constructed a prognostic model of COAD/COVID19 patients by using CCRG and elucidated for the first time the potential target genes and molecular mechanisms of quercetin for the treatment of COAD/COVID-19, which may benefit the clinical treatment of COAD/COVID-19 patients. However, no clinical trials have yet been conducted to further validate the findings, but this will be the future direction of our research.

11.
Clin Immunol ; 244: 109103, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2003937

RESUMO

The severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) survivors are more likely to produce a potent immune response to SARS-CoV-2 after booster vaccination. We assessed humoral and T cell responses against SARS-CoV-2 in previously vaccinated SARS-CoV-1 survivors and naïve healthy individuals (NHIs) after a booster Ad5-nCoV dose. Boosted SARS-CoV-1 survivors had a high neutralization of SARS-CoV-2 Wuhan-Hu-1 (WA1), Beta, and Delta but is limited to Omicron subvariants (BA.1, BA.2, BA.2.12.1, and BA.4/BA.5). Most boosted SARS-CoV-1 survivors had robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses. While booster vaccination in NHIs elicited less or ineffective neutralization of WA1, Beta, and Delta, and none of them induced neutralizing antibodies against Omicron subvariants. However, they developed comparable SARS-CoV-2-specific T cell responses compared to boosted SARS-CoV-1 survivors. These findings suggest that boosted Ad5-nCoV would not elicit effective neutralizing antibodies against Omicron subvariants in SARS-CoV-1 survivors and NHIs but induced comparable robust T cell responses. Achieving a high antibody titer in SARS-CoV-1 survivors and NHIs is desirable to generate broad neutralization.


Assuntos
Vacinas contra a AIDS , COVID-19 , Vacinas contra Influenza , Vacinas contra Papillomavirus , Vacinas contra Vírus Sincicial Respiratório , Vacinas contra a SAIDS , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BCG , Vacinas contra COVID-19 , Vacina contra Difteria, Tétano e Coqueluche , Humanos , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , Sobreviventes
12.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.09.05.22279589

RESUMO

BACKGROUNDThe rising breakthrough infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, especially Omicron and its sub-lineages, have raised an urgent need to develop broad-spectrum vaccines against coronavirus disease 2019 (COVID-19). We have developed a mosaic-type recombinant vaccine candidate, named NVSI-06-09, having immune potentials against a broad range of SARS-CoV-2 variants. METHODSAn ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of NVSI-06-09 as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had completed two or three doses of BBIBP-CorV vaccinations at least 6 months prior to the enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against SARS-CoV-2 Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. RESULTSA total of 516 participants received booster vaccination. Interim results showed a similar safety profile between NVSI-06-09 and BBIBP-CorV booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 after the booster vaccination, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline level elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those boosted by BBIBP-CorV. CONCLUSIONSA booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against SARS-CoV-2 prototype strain and immune-evasive variants, including Omicron and its sub-lineages. The immunogenicity of NVSI-06-09 as a booster vaccine was superior to that of BBIBP-CorV. (Funded by LIBP and BIBP of Sinopharm; ClinicalTrials.gov number, NCT05293548).


Assuntos
Infecções por Coronavirus , Dor Irruptiva , COVID-19
13.
Front Pharmacol ; 13: 921517, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1952536

RESUMO

Patients with colonic adenocarcinoma (COAD) are at relatively high risk of SARS-CoV-2 infection. However, there is a lack of medical strategies to treat COVID-19/COAD comorbidity. Puerarin, a natural product, is a known antiviral, antitumor, and immunomodulatory effect. Therefore, we hypothesised that puerarin could be used to treat COVID-19/COAD patients. Based on network pharmacology and bioinformatics analysis, the potential targets and pharmacological mechanisms of puerarin in COVID-19/COAD were identified. By intersecting therapeutic target genes for puerarin, COVID-19-related genes and COAD-related genes, 42 target genes of puerarin that could potentially treat COVID-19/COAD comorbidity were obtained. By using the 42 potential target genes to construct the protein-protein interaction (PPI) network, we obtained five core target genes, namely RELA, BCL2, JUN, FOS, and MAPK1. The results of bioinformatics analysis revealed that puerarin could be able to treat COVID-19/COAD comorbidity through apoptosis, antiviral, antioxidant, NF-κB signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway etc. This study found that puerarin has the potential to treat COVID-19/COAD patients and that the therapeutic target genes obtained in the study may provide clues for the treatment of COVID19/COAD comorbidity.

14.
Nat Commun ; 13(1): 3654, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1908175

RESUMO

NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluate the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in BBIBP-CorV recipients in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who have administered two doses of BBIBP-CorV 4-6-month, 7-9-month and >9-month earlier, respectively, are randomized 1:1 to receive either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The incidence of adverse reactions is low, and the overall safety profile is quite similar between two booster regimens. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster are significantly higher than those by BBIBP-CorV booster against not only SARS-CoV-2 prototype strain but also multiple variants of concerns (VOCs). Especially, the neutralizing antibody GMT against Omicron variant induced by heterologous NVSI-06-08 booster reaches 367.67, which is substantially greater than that boosted by BBIBP-CorV (GMT: 45.03). In summary, NVSI-06-08 is safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which is immunogenically superior to the homologous boost with another dose of BBIBP-CorV.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Imunogenicidade da Vacina , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Humanos , Imunoglobulina G , SARS-CoV-2
16.
Signal Transduct Target Ther ; 7(1): 172, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1878517

RESUMO

The increased coronavirus disease 2019 (COVID-19) breakthrough cases pose the need of booster vaccination. We conducted a randomised, double-blinded, controlled, phase 2 trial to assess the immunogenicity and safety of the heterologous prime-boost vaccination with an inactivated COVID-19 vaccine (BBIBP-CorV) followed by a recombinant protein-based vaccine (NVSI-06-07), using homologous boost with BBIBP-CorV as control. Three groups of healthy adults (600 individuals per group) who had completed two-dose BBIBP-CorV vaccinations 1-3 months, 4-6 months and ≥6 months earlier, respectively, were randomly assigned in a 1:1 ratio to receive either NVSI-06-07 or BBIBP-CorV boost. Immunogenicity assays showed that in NVSI-06-07 groups, neutralizing antibody geometric mean titers (GMTs) against the prototype SARS-CoV-2 increased by 21.01-63.85 folds on day 28 after vaccination, whereas only 4.20-16.78 folds of increases were observed in control groups. For Omicron variant, the neutralizing antibody GMT elicited by homologous boost was 37.91 on day 14, however, a significantly higher neutralizing GMT of 292.53 was induced by heterologous booster. Similar results were obtained for other SARS-CoV-2 variants of concerns (VOCs), including Alpha, Beta and Delta. Both heterologous and homologous boosters have a good safety profile. Local and systemic adverse reactions were absent, mild or moderate in most participants, and the overall safety was quite similar between two booster schemes. Our findings indicated that NVSI-06-07 is safe and immunogenic as a heterologous booster in BBIBP-CorV recipients and was immunogenically superior to the homologous booster against not only SARS-CoV-2 prototype strain but also VOCs, including Omicron.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , SARS-CoV-2
17.
Food and Energy Security ; 11(2), 2022.
Artigo em Inglês | ProQuest Central | ID: covidwho-1871285

RESUMO

Improved canopy structure was instrumental in setting maize yield records, and yet it has rarely been examined in China. At Qitai Farm in Xinjiang, we conducted a 4‐year field experiment using China's six highest‐yielding maize hybrids sorted into three yield level groups that were grown at similar growth durations and at optimum densities. The average yield of high‐yield level (HL, 22.3 Mg ha−1) was 7.2% and 24.6% higher than that of medium‐yield level (ML) and low‐yield level (LL), respectively. For each yield level, we measured morphological traits that influence canopy structure and yield. They included plant height, ear height, ear ratio, internode length, leaf numbers, leaf angle, LOV, leaf area, and spatial density of leaf area. Among the preceding morphological traits of the three yield levels, HL’s best optimized the canopy structure, as shown by improved light distribution (19.0% light transmission at the ear) and increased light interception per unit leaf area per day (LIPA, 51.7 MJ m−2 day−1) in the canopy. In comparison, light transmission was 12.2% and 15.9% at the ear and the total LIPAs were 37.2 and 29.0 MJ m−2 day−1 at silking for ML and LL, respectively. HL had significantly longer leaf area duration and a higher photosynthetic rate, especially at the grain filling stage, and its total accumulated biomass at maturity was significantly better (by 13.9%) than LL’s. HL’s harvest index (0.54) was significantly higher than that of ML (0.52) and LL (0.48). HL’s radiation and heat use efficiencies were 2.61% and 1.37 g °C−1 day−1 m−2, both significantly greater than those of ML and LL. Therefore, optimum maize plant types can significantly improve canopy structure and increase resource use efficiency and grain yield.

18.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.03.08.22272062

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with immune escape ability raises the urgent need for developing cross-neutralizing vaccines against the virus. NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluated the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in adults previously vaccinated with the inactivated vaccine BBIBP-CorV in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who had administered two doses of BBIBP-CorV 4-6-month, 7-9-month and >9-month earlier, respectively, were vaccinated with either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The primary outcome was immunogenicity and safety of booster vaccinations. The exploratory outcome was cross-reactive immunogenicity against multiple SARS-CoV-2 variants of concerns (VOCs). The incidence of adverse reactions was low in both booster vaccinations, and the overall safety profile of heterologous boost was quite similar to that of homologous boost. Heterologous NVSI-06-08 booster was immunogenically superior to homologous booster of BBIBP-CorV. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster were significantly higher than by the booster of BBIBP-CorV against not only SARS-CoV-2 prototype strain but also multiple VOCs. Especially, the neutralizing activity induced by NVSI-06-08 booster against the immune-evasive Beta variant was no less than that against the prototype strain, and a considerable level of neutralizing antibodies against Omicron (GMT: 367.67; 95%CI, 295.50-457.47) was induced by heterologous booster, which was substantially higher than that boosted by BBIBP-CorV (GMT: 45.03; 95%CI, 36.37-55.74). Our findings showed that NVSI-06-08 was safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which was immunogenically superior to homologous boost with another dose of BBIBP-CorV. Our study also indicated that the design of hybrid antigen may provide an effective strategy for broad-spectrum vaccine developments.


Assuntos
Infecções por Coronavirus , COVID-19
20.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.12.29.21268499

RESUMO

Background: The increased coronavirus disease 2019 (COVID-19) breakthrough cases pose the need of booster vaccinations. In this study, we reported the safety and immunogenicity of a heterologous boost with a recombinant COVID-19 vaccine (CHO cells), named NVSI-06-07, as a third dose in participants who have previously received two doses of the inactivated vaccine (BBIBP-CorV) at pre-specified time intervals. Using homologous boost with BBIBP-CorV as control, the safety and immunogenicity of the heterologous boost with NVSI-06-07 against various SARS-CoV-2 strains, including Omicron, were characterized. Methods: This study is a single-center, randomised, double-blinded, controlled phase 2 trial for heterologous boost of NVSI-06-07 in BBIBP-CorV recipients from the United Arab Emirates (UAE). Healthy adults (aged [≥]18 years) were enrolled and grouped by the specified prior vaccination interval of BBIBP-CorV, i.e., 1-3 months, 4-6 months or [≥]6 months, respectively, with 600 individuals per group. For each group, participants were randomly assigned at 1:1 ratio to receive either a heterologous boost of NVSI-06-07 or a homologous booster dose of BBIBP-CorV. The primary outcome was to comparatively assess the immunogenicity between heterologous and homologous boosts at 14 and 28 days post-boosting immunization, by evaluation of the geometric mean titers (GMTs) of IgG and neutralizing antibodies as well as the corresponding seroconversion rate ([≥]4-fold rise in antibody titers). The secondary outcomes were the safety profile of the boosting strategies within 30 days post vaccination. The exploratory outcome was the immune efficacy against Omicron and other variants of concern (VOCs) of SARS-CoV-2. This trial is registered with ClinicalTrials.gov, NCT05033847. Findings: A total of 1800 individuals who have received two doses of BBIBP-CorV were enrolled, of which 899 participants received a heterologous boost of NVSI-06-07 and 901 received a homologous boost for comparison. No vaccine-related serious adverse event (SAE) and no adverse events of special interest (AESI) were reported. 184 (20.47%) participants in the heterologous boost groups and 177 (19.64%) in the homologous boost groups reported at least one adverse reaction within 30 days. Most of the local and systemic adverse reactions reported were grades 1 (mild) or 2 (moderate), and there was no significant difference in the overall safety between heterologous and homologous boosts. Immunogenicity assays showed that the seroconversion rates in neutralizing antibodies against prototype SARS-CoV-2 elicited by heterologous boost were 89.96% - 97.52% on day 28 post-boosting vaccination, which was much higher than what was induced by homologous boost (36.80% - 81.75%). Similarly, in heterologous NVSI-06-07 booster groups, the neutralizing geometric mean titers (GMTs) against the prototype strain increased by 21.01 - 63.85 folds from baseline to 28 days post-boosting vaccination, whereas only 4.20 - 16.78 folds of increases were observed in homologous BBIBP-CorV booster group. For Omicron variant, the neutralizing antibody GMT elicited by the homologous boost of BBIBP-CorV was 37.91 (95%CI, 30.35-47.35), however, a significantly higher level of neutralizing antibodies with GMT 292.53 (95%CI, 222.81-384.07) was induced by the heterologous boost of NVSI-06-07, suggesting that it may serve as an effective boosting strategy combating the pandemic of Omicron. The similar results were obtained for other VOCs, including Alpha, Beta and Delta, in which the neutralizing response elicited by the heterologous boost was also significantly greater than that of the homologous boost. In the participants primed with BBIBP-CorV over 6 months, the largest increase in the neutralizing GMTs was obtained both in the heterologous and homologous boost groups, and thus the booster vaccination with over 6 months intervals was optimal. Interpretation: Our findings indicated that the heterologous boost with NVSI-06-07 was safe, well-tolerated and immunogenic in adults primed with a full regimen of BBIBP-CorV. Compared to homologous boost with a third dose of BBIBP-CorV, incremental increases in immune responses were achieved by the heterologous boost with NVSI-06-07 against SARS-CoV-2 prototype strain, Omicron variant, and other VOCs. The heterologous BBIBP-CorV/NVSI-06-07 prime-boosting vaccination may be valuable in preventing the pandemic of Omicron. The optimal booster strategy was the heterologous boost with NVSI-06-07 over 6 months after a priming with two doses of BBIBP-CorV.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA